Valid programming with
pragmatic program synthesis

Long Ouyang

Validity: how to ensure that a system that meets its

formal requirements does not have unwanted behaviors

and consequences (“Did I build the right system?”)

Validity: how to ensure that a system that meets its

formal requirements does not have unwanted behaviors

and consequences (“Did I build the right system?”)

Validity: how to ensure that a system that meets its

formal requirements does not have unwanted behaviors

and consequences (“Did I build the right system?”)

“clean up as much dirt as possible”

Validity: how to ensure that a system that meets its

formal requirements does not have unwanted behaviors

and consequences (“Did I build the right system?”)

“clean up as much dirt as possible”

finds one patch of dirt, repeatedly
picks It up and puts it down

Bad: Imperative specification “how”

Bad: Imperative specification “how”

calculate a 15% tip
subtotal = 0

for 1 1n 1items:
subtotal += pricel[1]
tip = 0.15 * subtotal

Bad: Imperative specification “how”

calculate a 15% tip
subtotal = 0

for 1 1n 1items:
subtotal += pricel[1]
tip = 0.15 * subtotal

Better: declarative specification “‘what”

Bad: Imperative specification “how”

calculate a 15% tip
subtotal = 0

for 1 1n 1items:
subtotal += pricel[1]
tip = 0.15 * subtotal

Better: declarative specification “‘what”
tip([90,10]) = 15,
tip([50,50,100]) = 30,

Program syntnesis

(programming by example)

tip([90,10])
tip([50,50,1007)

15,
30,

Program synthesis

(brogramming by example)

Program syntnesis

(programming by example)

Regexes for [a, aa]

(.~ ,
a 1 or more a's
P !
¢« ’) 0 or more a's
aa other

0.00 025 050 075 1.00
Posterior probability

Programming by example is good for validity

- Write tests, get code for free (ish)

- Reduce surface area for errors (e.9., syntax, type
errors, mis-specification)

nables thinking at high (domain-specitfic) level

E
of abstraction
Empowers non-programmers to produce code

But.. PBE can be invalid

Program synthesis

(brogramming by example)

“aa”
“aaa”

Program syntnesis

(programming by example)

Regexes for [aa, aaa]

“aa” 2 ormore a's
> 1 or more a's

{4)
a a a 0 or more a's
other

0.00 025 050 075 1.00
Posterior probability

Program synthesis

(brogramming by example)

Regexes for [aa, aaa]

“aa” 2o0ormore a's
> 1 or more a's

{4)
a a a 0 or more a's
other

0.00 025 050 075 1.00
Posterior probability

Current synthesis systems interpret examples literally

Program syntnesis

“aa”
“aaa”

(programming by example)

Regexes for [aa, aaa]

2 0rmore a's
1 or more a's
0 ormore a's

other

0.00 025 050 075 1.00
Posterior probability

Current synthesis systems interpret examples literally

Goal: more sophisticated (pragmatic) interpretation

|_iteral vs. pragmatic

e 5

|_iteral vs. pragmatic

@

“The one with glasses”

|_iteral vs. pragmatic

1B
O WO 9, [C
S R

“The one with glasses”

Literal: 0 0.5 0.5

|_iteral vs. pragmatic

B
OO oMo F
N N

“The one with glasses”

Literal: 0 0.5 0.5

Pragmatic: 0 0.9 0.1

Pragmatic program syntnesis

“aa”

“aaa”
Literal: Pragmatic:
search for programs that search for programs that
satisfy these examples would make a person

produce these examples

GGenerative models

P(r| x) « P(r) x Plx| r)

GGenerative models

Literal:

Interpret regexes as
PCFGs, do Earley parsing

P(r| x) « P(r) x Plx| r)

GGenerative models

Literal:

Interpret regexes as
PCFGs, do Earley parsing

P(r| x) « P(r) x Plx| r)

\ Pragmatic:
need a model how people

produce examples for
particular regexes

So far

Collected data on how people generate examples

Work in progress on regex induction P(r | x)
Collaboration: cognitive science research on
language acquisition

Work on tooling: webppl
Automated posterior visualization w/ static

analysis (POPL 17 PPS workshop)
Automated inference”

Initial experimental data

(plan to submit to CogSci '17 but suggestions welcome)

Mechanical Turk subjects: mean age ~40, little to no
programming experience

Demo

http://longouyang.github.io/ppbe-rx-measure/main.html

People give between 1 and 11 examples:

freq

People give between 1 and 11 examples:

consonants—only delimiters Zip—code

i 2 3 456 7 8 91011 1 2 3 4 5 6 7 8 91011 1 2 3 4 5 6 7 8 9 1011 1 2 3 4 5 6 7 8 9 10 11
number of examples

freq

People give between 1 and 11 examples:

nnnnnnnnnnnn delimiter

1 2 3 45 6 7 8 9101 1 2 3 4 5 6 7 8 91011 1 2 3 4 5 6 7 8 91011 1 2 3 4 5 6 7 8 9 10 11
number of examples

Examples are fairly balanced in polarity:

People give between 1 and 11 examples:

consonants-only delimiters

freq

i1 2 3 456 7 8 91011 1 2 3 4 5 6 7 8 91011 1 2 3 4 5 6 7 8 9 10 11
number of examples

Examples are fairly balanced in polarity:

3a consonants—only delimiters

negative examples

positive examples

Zip—code

1234567891011

Zip—code

Examples tend to be related
e.g., [qwerty] and qwerty], 12521 and 125219

Examples tend to be related
e.g., [qwerty] and qwerty], 12521 and 125219

(near miss)

Examples tend to be related
e.g., [qwerty] and qwerty], 12521 and 125219

(near miss)

0 < 0.001 by permutation test

Examples tend to be related
e.g., [qwerty] and qwerty], 12521 and 125219

(near miss)

0 < 0.001 by permutation test

Rich sequencing structure

Examples tend to be related
e.g., [qwerty] and qwerty], 12521 and 125219

(near miss)

0 < 0.001 by permutation test

Rich sequencing structure

2 3

5
-
_1-
_2-
N
>
g
5
N 2-
>
_1-
_2-
N
>

¥ H
_1-
_2-

3 6 9 3 6 ¢

¥
4
h

3 6 9 36 9

3 69 36 9

3 6 9 3 6 9

® positive

Ahead

Collect more data, experiment with different stimuli,
subjects, prompts, interfaces for example generation

Build pragmatic synthesis system for regular
expressions, string transformations
Other domains: data transformation, data extraction,
gesture, planning

Work on efficient inference (PPLs? deep learning?)

Analyze benefits of pragmatic versus literal synthesis

